Pure-periodic Modules and a Structure of Pure-projective Resolutions

نویسندگان

  • Daniel Simson
  • DANIEL SIMSON
چکیده

We investigate the structure of pure-syzygy modules in a pure-projective resolution of any right R-module over an associative ring R with an identity element. We show that a right R-module M is pure-projective if and only if there exists an integer n ≥ 0 and a pure-exact sequence 0 → M → Pn → · · · → P0 → M → 0 with pure-projective modules Pn, . . . , P0. As a consequence we get the following version of a result in Benson and Goodearl, 2000: A flat module M is projective if M admits an exact sequence 0 → M → Fn → · · · → F0 → M → 0 with projective modules Fn, . . . , F0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covers, Preenvelopes, and Purity

We show that if a class of modules is closed under pure quotients, then it is precovering if and only if it is covering, and this happens if and only if it is closed under direct sums. This is inspired by a dual result by Rada and Saorín. We also show that if a class of modules contains the ground ring and is closed under extensions, direct sums, pure submodules, and pure quotients, then it for...

متن کامل

Complexes of $C$-projective modules

Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.

متن کامل

$(m,n)$-algebraically compactness and $(m,n)$-pure injectivity

In this paper‎, ‎we introduce the notion of $(m,n)$-‎algebr‎aically compact modules as an analogue of algebraically‎ ‎compact modules and then we show that $(m,n)$-algebraically‎ ‎compactness‎ ‎and $(m,n)$-pure injectivity for modules coincide‎. ‎Moreover‎, ‎further characterizations of a‎ ‎$(m,n)$-pure injective module over a commutative ring are given‎.

متن کامل

On two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective

Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...

متن کامل

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002